Appendix D
Design Example-Finite Element
Method

D-1. General

a. The design example problem described in
Appendix B was analyzed using the composite finite
element-equivalent mass system method. The analy-
sis was performed on a PC using the computer pro-
gram ALGOR-Finite Element Analysis System.

b. Definitions of symbols and notations used in
this appendix can be found in the Glossary. Refer to
Appendix B where the values of several parameters
used as input to the finite element program were
developed.

D-2. Computer Model
The computer model is shown in Figures D-1
and D-2. The general characteristics are as follows:

a. The dam/foundation is a 2-D representation
using the critical transverse cross section of the dam.
The geometry of the finite element mesh is estab-
lished by 156 node points.

b. The foundation effects are modeled using a
block of foundation with the width of the block equal
to 3 times the width of the dam base, and the height
of the block equal to 1.5 times the height of the dam.

c. The boundary conditions along the bottom
and both sides of the foundation block consist of
roller restraints of the node points establishing these
boundary lines.

d. Both the dam and the foundation block are
modeled with 2-D solid, isotropic, quadrilateral, plane
strain elements. The dam consists of 78 elements,
and the foundation block consists of 48 elements.
The nodes establishing the corners of the elements
have 2 degrees-of-freedom (Y and Z translations).

e. The material properties for the dam RCC and
the foundation block are given in Appendix B. The
density of the foundation block is set to zero so the
ground motion is transmitted to the dam-foundation
interface without modification.
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f. The reservoir effects are modeled by devel-
oping an equivalent mass system which consists of
adding lumped masses to the nodal points at the
upstream face of the dam as shown in Figure D-1.
Procedure for determining the magnitude of the added
masses is given below.

D-3. Equivalent Mass System Representa-
tion of Reservoir Effects

a. This system models the hydrodynamic effects
by adding mass to the finite element model. It is
founded on the equations and techniques used by
Chopra in developing his simplified analysis method.
It is based on the fundamental mode, but since this
usually contributes 85 to 90 percent of the response,
it produces good results. The method accounts for
the compressibility of water and the interaction of the
water with the elastic structure and foundation. The
equations used in deriving the equivalent mass system
for finite element analysis are:

M

S

f,=—= = (gm) (¥ (D-1)
M, 9
where
f, = total lateral force per unit height acting at a

certain elevatiorincluding the hydrodynamic
contribution

m = equivalent mass system which consists of
m = mg+ My (D-2)
where
ms = mass per unit height of concrete
My, = mass per unit height which must be added to
account for the hydrodynamic effects
Y, = fundamental mode shape normalized so the
crest of the dam has a unit deflection
m,, - wﬁ (D-3)
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Figure D-1. Composite finite element-equivalent mass system model
where L s
ffﬁlg“(wsw1 +gp)

p = the hydrodynamic pressure function deter-
mined by using Chopra'’s standardized curves

Ogp O L . .
of This is discussed in detail later.
SHE

wg = g(my) (D-4)

where
wg = weight per unit height of concrete
b. It is now possible to substitute Equations D-2

through D-4 into Equation D-1 which gives the basic
equation used in Chopra’s simplified method:

D-2

1

c. The above derivation shows that Chopra’s
simplified method is based on an “equivalent mass
system.” The added mass that accounts for the
hydrodynamic effects is represented iy, in Equa-
tion D-3 above. This same added mass can be
included in a finite element model, and it will cause
the model to respond with a very good approximation
of the interaction of the compressible water on the
flexible structure/foundation system.

d. Chopra provides standardized curves of the

hydrodynamic pressure functi gp% . It should be
HO
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Figure D-2. Zoom-in of finite element mesh at top of dam

noted that these curves are based on the full reservoirThe finite element model requires the distributed

condition whereH/H, = 1. To correct the values
taken from the curves for other reservoir depths it is
necessary to multiply these values by the following

as expressed by

massm to be converted to lumped masses applied at
appropriate nodes on the upstream face of the model

factor:
O O M =C
D D @ D _ n tr rT]HD
D[WHEDH O OHgp E h
— B ere
- Hi 9 off:H HovHE W
where M, = added lumped mass at a particular node
p = hydrodynamic pressure function for a reser-  C, = the tributary area associated with a particular
voir of depthH above the foundation node
Then the added mass is calculated to be: my, = the value of the distributed mass (mass per
0 0 unit height) at a particular node location
" p 1 HwnpBeBHogn ©9) , _ ,
Mp = — = — Og&3—0 0 od—gU Equation D-5 is then rewriten as:
W, U, 0i9 0B BowvHp
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e. The Chopra curves for standardized pressure
function are based on the ratig), which is defined
by the following equation:

R, - L (D-7)
TI’
where
=2 (D-8)
C

Equations forT, will now be derived which are based
on terms that are determined by performing modal
analyses using the computer model described in para-
graph D-2 to extract the fundamental resonant period
for the first mode and the characteristic shape of the
first mode.

T =RT, (D-9)
T, = RT, (B-10)
T, - RRT, (8=

By rearranging terms of Equations D-9 and D-10,
substituting into Equation D-11, and finally solving
for T, results in the following:

(D-12)

Use of these equations is further discussed in the
procedure described below.

D-4. Procedure to Determine Added
Lumped Masses
The following is a step-by-step procedure to deter-

mine the lumped masses to be added at the upstream
node points to model the hydrodynamic effects:

D-4

Step 1. Perform the modal extraction phase of
the dynamic analysis to determine the fundamental
resonant period; of the dam on a rigid foundation
with an empty reservoir. This requires modifying the
computer model described in paragraph D-2 by tem-
porarily fixing the nodes at the dam-foundation inter-
face to create the rigid foundation condition required
for this step only. This step is referred to eam-
puter run #1 and requires extracting only the first
mode.

Step 2. Calculatéd/H, for the pool elevation of
interest, and use Figure D-3 to determine a value of
R. Then calculatél, using Equation D-9, and then
calculateR,, using Equation D-7.

Step 3. With this value oR,, use Figure D-4 to
obtain values of the standard hydrodynamic pressure
function @p/wH) at the locations of/H that corre-
spond to the upstream node point elevations. Use the
R, curve that is nearest the calculated valudrpf
but on the conservative side. Note that the appropri-
ate value ofa, the wave reflection coefficient, was
calculated for the example problem in Appendix B.
To determine the correct values gfpwH) for this
value ofa, it will be necessary to interpolate between
the appropriate pair of graphs. These values of
(gp/wH) are used to develop the initial added mass
model (see Table D-1 for an example).

Step 4. Remove the temporary node point fixities
at the dam-foundation interface leaving the computer
model with the boundary conditions described in
paragraph D-2, and perform the modal extraction
phase of the dynamic analysis to determine the fun-
damental resonant period of the dam on its elastic
foundation with an empty reservoﬁf, and the corre-
sponding characteristic mode shape for the first mode.
This step is referred to asomputer run #2and
requires extracting only the first mode.

Step 5. Normalize the first mode shape from
computer run #20 a unit translation at the top of the
dam by dividing the appropriate node point transla-
tion values by the translation value of the node at the
top upstream corner of the dam. These are the values
of Y, for use in developing the initial added mass
model.

Step 6. Using these values ¢f and gp/wH),
calculate the values d#l, using Equation D-6. Add
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Figure D-3. Initial values of

R,, the period lengthening ratio due to hydrodynamic effects
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these lumped masses to the computer model at the problem. The normal pool condition associated with
appropriate upstream node points. This now becomesthe MCE will be used to demonstrate the procedure.

the initial added mass model.

Determining the added lumped masses for the normal

pool condition associated with the OBE and for low

Step 7. Using the initial added mass model,

pool conditions is similar. The computer model as

perform the modal extraction phase of the dynamic  described in paragraph D-2 is used in the modal
analysis to determine the fundamental resonant periodanalyses mentioned below.

of the dam,T,, on its elastic foundation with reservoir
of depthH, and the corresponding characteristic mode
shape for the first mode. This step is referred to as
computer run #3and requires extracting only the

first mode.

Step 8. Normalize the first mode shape from
computer run #30 a unit translation at the top of the
dam by dividing the appropriate node point transla-

tion values by the translation value of the node at the H/H,

top upstream corner of the dam. These are the values
of Y, for use in developing the final added mass
model.

Step 9. Using the values @f, from computer
run #1, T, from computer run #2and T, from com-
puter run #3 calculateT, using Equation D-12. With
this value ofT,, calculateR, using Equation D-7.

Step 10. With the new value &,, use
Figure D-4 to obtain values of the standard hydrody-
namic pressure functiorgp/wH) at the locations of
y/H that correspond to the upstream node point eleva-
tions. Use theR, curve that is nearest the calculated
value of R,, but on the conservative side. The value
of a is the same as used in step 3. To determine the
correct values ofdp/wH) for this value ofa, it will
be necessary to interpolate between the appropriate
pair of graphs. These values afg{wH) are used to
develop the final added mass model (see Table D-1
for an example).

Step 11. Using the values df; from step 8, and
the values of gp/wH) from step 10, calculate the
values ofM, using Equation D-6. Add these lumped
masses to the computer model at the appropriate

Initial added mass model.
2445 - 1950 = 495 ft

4H/C = 4(495)/4720 = 0.4195 sec (D-8)
2550 - 1950 = 600 ft

495/600 = 0.825

0.3882 sec frontomputer run #where the
nodes at the dam base-foundation interface
(nodes 56 through 62) of the composite dam/
foundation model are fixed to create the
condition of a dam on a rigid foundation.

the eigenvector (mode shape) for mode 1
from computer run #2vhich uses the com-
posite dam/foundation model with empty
reservoir. The lateral mode shape transla-
tions {-direction) are taken from the mode
shape computer analysis output at the
upstream face node points shown in Fig-
ures D-1 and D-2, and are normalized to a
unit translation at the top of the dam (by
dividing each translation value by the trans-
lation output value for the node at the top
upstream corner). The normalized values are
entered in the appropriate column of

Table D-1 for the initial added mass model.

1.10 from Figure D-3 (foH/H, = 0.825),
which now allows the following to be
calculated:

upstream node points. This completes the final equi- T - RT, = 1.10 (0.3882)= 0.4270 sec (D-9)

valent mass system representation of the reservoir
effects for the reservoir of deptH.

D-5. Applying Added Lumped Mass Proce-
dure to the Example Problem

R, = T,//T, = 0.4195/0.4270- 0.982 (D-10)

(gp/wH) values are obtained from Figure D-4 for the
values ofy/H that correspond to the upstream node

point elevations shown in Figure D-1. The curve
The added lumped mass procedure described in para-lines forR, = 0.95 are used since they are nearest

graphs D-3 and D-4 will be applied to the example

D-7
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the calculated value dR, = 0.982 (on the conserva-
tive side), and the plots far = 0.5 and 0.75 are
interpolated to give the values af§wH) for the
calculated value ofi = 0.69. Values of dp/wH) are
entered in Table D-1 for the initial added mass
model.

M, = the lumped masses to be added to the
upstream node points which are calculated
using the following:

M, = [(WH/g) (H/H9)?] (C,/w,) (gp/wH) (D-6)

where

(WH/g) (H/HS)? = (0.0624 x 495 / 32.2) (0.825)
- 0.653

and

M_ = 0.653 C /) (gp/wH)

b. Final added mass model.

0.5188 sec frontomputer run #2avhich uses
the composite dam/foundation model with
empty reservoir.

0.5638 sec frontomputer run #3using the
composite dam/foundation model with the
added lumped masses at the upstream face
which represent the hydrodynamic effects of
the reservoir as calculated for thatial

Added Mass Model

—]
|

= T,T,/T, = 0.5638 (0.3882)/0.5188
0.4219 sec

(D-12)

R, = 0.4195/0.4219- 0.994 (D-7)

the eigenvector (mode shape) for mode-1
from computer run #3wvhich uses the com-
posite dam/foundation model with lumped

g, =
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upstream face node points, and are normal-
ized to a unit translation at the top of the
dam (by dividing each translation value by
the translation output value for the node at
the top upstream corner).

(gp/wH) values are obtained from Figure D-4 for the
values ofy/H that correspond to the
upstream node point elevations shown in
Figure D-1. The curve lines fdR, = 1.0 are
used since they are so close to the calculated
value ofR, = 0.994, and the plots fan
= 0.5 and 0.75 are interpolated to give the
values of gp/wH) for the calculated value of
o = 0.69.

M, = the lumped masses to be added to the
upstream node points and are calculated
using the following:

M, = [ (wH/g) (H/H9)? ] (C,/w,) (gp/wH) (D-6)

where

(WH/g) (H/Hs)? = (0.0624 x 495/32.2) (0.825%
0.653

and

M, = 0.653 C,/y,) (gp'wH)

The initial lumped mass model is then modified by
replacing the lumped masses that were added to the
upstream nodes with these new lumped mass values
thus creating the final added mass model for the
MCE high pool condition.

D-6.  Effective Damping Factor

Since the dam, foundation, and reservoir respond
together as a system to ground motion, the damping
contribution of each component must be considered
when developing the effective damping factor. As
with the equivalent mass system, Chopra’s equations
and curves for his simplified analysis method may be
utilized in the finite element approach. The equation

masses from the initial added mass model to for the effective damping factor is

represent the hydrodynamic effects of the

reservoir. The lateral mode shape transla-
tions {y-direction) are taken from the mode
shape computer analysis output at the

1 1

€= = ——_ € *E +§

= D-13
R (R) (43
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Figure D-6. Values for ¢, , the added damping
ratio due to dam-foundation rock interaction

where

€ = the effective damping factor

€, = 5.0% for the OBE
€ = 7.0% for the MCE
€, is taken from Figure D-5
& is taken from Figure D-6
and

R=T/T, (D-14)

R =T,/T, (D-15)

D-7. Procedure to Determine the Effective
Damping Factor

a. Using the final added mass model, perform
the modal extraction phase of the dynamic analysis to
determine the fundamental resonant period of the

EP 1110-2-12
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dam, T,, on its elastic foundation with reservoir of
depthH. This iscomputer run #4

b. Using the value off; from computer run #1
T, from computer run #2and T, from computer
run #4, calculatéR, using Equation D-14, anR,
using Equation D-15.

c. Determine the value of from Figure D-5
interpolating between the appropriate curve lines for
the required value ofi, and between the appropriate
pair of graphs for the required value Bf. Note that
the appropriate value af, the wave reflection coeffi-
cient, andkg,, the seismic modulus of elasticity, were
calculated for the example problem in Appendix B.

d. Determine the value of; from Figure D-6.
If the constant hysteretic damping factor for the foun-
dation is not known, assume = 0.10.

e. Calculate the effective damping factor using
Equation D-13.

D-8.  Applying Damping Factor Procedure
to the Example Problem

The procedure for determining the effective damping
factor will be applied to the example problem. The
high pool condition associated with the MCE, and the
conservation pool (low pool) condition for the MCE
will be used to demonstrate the procedure.

T, = 0.3882 sec frontomputer run #1

'T} = 0.5188 sec frontomputer run #2

T, = 0.5575 sec (hormal pool for MCE) from
computer run #4

T, = 0.5208 sec (low pool for MCE) frormom-
puter run #4

= T,/T,=0.5188/0.3882 = 1.3364

(Equation D-14)

R = TJ/T,=0.5575/0.5188 = 1.075 (normal pool

for MCE, Equation D-15)

T,/T, = 0.5208/0.5188 = 1.003 (low pool for
MCE, Equation D-15)

D-11
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H = 2550 - 1950 = 600 ft

H, = 2445 - 1950 = 495 ft (hormal pool for MCE),
andH/H, = 0.825

H, = 2220 - 1950 = 270 ft (low pool for MCE),
andH/H, = 0.450

0.69, E, = 3590 ksi, and; = 3500 ksi as
calculated in Appendix B

0.0158 (normal pool for MCE) from Fig-
ure D-5 forH/H, = 0.825, interpolating
between thex = 0.50 and 0.75 curve lines
for the required value ofi = 0.69, and also
interpolating between the graphs f =

3.5 million psi and 4 million psi for the
required value ok, = 3590 ksi

0.0 (low pool for MCE). WherH/H, < 0.5,
£ =0.0

0.0703 from Figure D-6 foEJE; = 3590/
3500 = 1.025, and an assumed valuenof
0.10

7.0 percent

g = (1/1.075)(1/(1.3364)(7.0) + 100(0.0158) +
100(0.0703) = 11.34 percent (normal pool for
MCE, using Equation D-13)

g = (1/1.003)(1/(1.3364)(7.0) + 100(0.0) +
100(0.0703) = 9.95 percent (low pool for
MCE, using Equation D-13)

D-9. Design Response Spectra

As discussed in Appendix B, the conditions for this
example problem require a site-specific design
response spectra. However, since this is only for the
purpose of demonstrating the finite element method,
the standard design response spectra shown in
Figure 5-1 and Table 5-1 will be assumed to be the
site-specific design response spectra.

a. Normalized design response spectithe

T,= 0.5208 sec for the MCE low pool
The design response spectra needs to be defined only
for values of the period” up to the above values
of T,.

B = & =11.34% normal pool for MCE

B = & =9.95% low pool for MCE

K, = 1.466 - 0.2895In(11.34) = 0.76300 normal
pool for MCE

K, = 1.466 - 0.289(9.95) = 0.80085 low pool
for MCE

K; = log(2.5 x 0.76300) = 0.28046 normal pool
for MCE

K; = log(2.5 x 0.80085) = 0.30149 low pool for
MCE

S, = spectral acceleration for period F

S = 10.0% for T < 0.400

S = KyS for T>0.400

b. Scaling factors-horizontal component of
ground motion. The above normalized design spectra

are scaled according to the scaling factors in

Table 5-2. The site is located in seismic Zone 3;
therefore, the scaling factors for the horizontal com-
ponent of ground motion = PGA = the following:

OBE: 0.210 g
MCE: 0.550 g

c. Design response spectra for the vertical
component of ground motionin accordance with the
requirements of paragraph 5-6, independent vertical
component site-specific design response spectra are
required for the example problem. However, for
demonstration purposes, the standard design response
spectra normalized to a PGA = 1.0 g as described
above will be assumed to also be the vertical compo-
nent site-specific design response spectra. The scal-

design response spectra normalized to a PGA = 1.0 gjng factors for the vertical component of ground

is calculated as follows:

T,= 0.5575 sec for the MCE normal pool

D-12
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T = period Sis) MCE Normal MCE Low

(sec) (g's) K, Pool (g's) Pool (g's)

0.002 1.0000 0.00000 1.0000 1.0000

0.010 1.0000 0.00000 1.0000 1.0000

0.020 1.2643 0.25596 1.1797 1.1945

0.040 1.5985 0.51192 1.3918 1.4267

0.060 1.8335 0.66164 1.5331 1.5830

0.080 2.0210 0.76787 1.6419 1.7041

0.100 2.1795 0.85028 1.7317 1.8045

0.120 2.3182 0.97160 1.8728 1.9630

0.150 2.5000 1.00000 1.9075 2.0021

0.400 2.5000 1.00000 1.9075 2.0021

0.450 2.2222 1.6955 1.7796

0.500 2.0000 1.5260 1.6017

0.550 1.8182 1.3873 1.4561

0.600 1.6667 1.2717 1.3348
R = source to site distance = 35 km (see Step 2. Two critical earthquake load cases for

Appendix B) the MCE have been identified, one combining the
design earthquake with the normal pool condition
~1 = 0.5577 sec for the MCE normal pool which is considered reasonable at the time of the
MCE event, and the second load case combining the

T, = 0.5208 sec for the MCE low pool design earthquake with the lowest possible pool at the

time of the MCE event (the conservation pool).
Based on these data, the ratio of (PGA of vertical

component)/(PGA of horizontal component) = 0.5. Step 3. The hydrodynamic effects of these two
Therefore, the scaling factors for the vertical compo- pool elevations have been determined in terms of
nent of ground motion are added lumped mass attached to the upstream face at
appropriate node points. Thus the single computer
OBE = 0.5 x 0.210 = 0.105 g model of step 1 becomes two added mass computer
models, one for the normal pool load case and one
MCE = 0.5 x 0.550 = 0.275 g for the low pool case.

Step 4. The effective damping factors for the

D-10. Response to Ground Motion combined dam/foundation/reservoir system have been

determined for both the normal pool and low pool
The procedure has now progressed to the point whereload cases.
it is possible to determine the dynamic response to
the ground motion associated with the design earth- Step 5. The design response spectra have been
guakes (the OBE and the MCE). For demonstration developed for the two effective damping factors.
purposes the example problem is considering only the

MCE; however, determining the response for the a. Modal analysis.
OBE would follow the same procedure. A summary
of the work steps completed thus far is as follows: (1) The next step in the procedure is to perform

the final, complete modal analysis. This computer
Step 1. The computer model of the dam/founda- run will extract all the modes which will make a
tion system has been formulated.
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significant contribution to the response. This requires (3) The modal participation factors for the first
some judgment, but 10 modes normally suffice for 10 modes produced by both the added mass computer
the typical gravity dam cross section like that of the  models are given in the accompanying tabulation.
example problem. Therefore, the first 10 modes will
be extracted and the modal participation factors for (4) The tabulations of modal participation factors
these 10 modes will be examined to ensure adequate indicate that the fundamental mode for the horizontal
precision in the response spectrum analysis to follow. (y-direction) component of ground motion is mode 1.
It is also apparent that for the horizontal component
(2) The modal participation factors are a func-  of ground motion, mode 7 through mode 10 have par-
tion of the mode shape and the mass distribution. ticipation factors no greater than 1/14th of the partici-
They are not influenced at all by ground motion as pation factor for mode 1. Therefore, it is judged that
expressed by the response spectrum. They only give modes 1 through 6 would have been adequate for the
an indication of the energy absorbing capability of a analysis for the horizontal component of ground
particular mode. Along with the participation factors, motion. The fundamental mode for the vertical
the response spectrum also has an obvious effect on (z-direction) component of ground motion is mode 2.
the response (deflection, stress .... etc.). Thus, the  For this component, mode 6 through mode 10 have
contribution for a given mode is not directly propor-  participation factors no greater than 1/16th of the
tional to the participation factor. However, the partic- participation factor for mode 2. Therefore, it is
ipation factor can be used for the purpose of judging judged that modes 1 through 5 would have been
a reasonable cutoff point where higher modes would adequate to determine the response for the vertical
not contribute significantly to the total response based component of ground motion. On this basis, it is
on a reasonable precision for the analysis. concluded that for the example problem, the

MCE Normal Pool Load Case
1**** Modal Participation Factors

Mode X-Direction Y-Direction Z-Direction period (sec)
1 0.0000E+00 2.4886E+01 4.7916E+00 5.5753E-01
2 0.0000E+00 1.1126E+01 -2.4501E+01 2.8220E-01
3 0.0000E+00 -1.2864E+01 -1.0706E+01 2.4083E-01
4 0.0000E+00 -6.8721E+00 -2.0829E+00 1.4334E-01
5 0.0000E+00 8.3296E-01 4.3875E+00 1.0627E-01
6 0.0000E+00 3.2880E+00 -3.8116E-01 9.7209E-02
7 0.0000E+00 -1.5844E+00 1.4926E+00 8.9524E-02
8 0.0000E+00 -1.3661E+00 9.1764E-02 8.0562E-02
9 0.0000E+00 1.7230E+00 -2.4378E-02 7.6114E-02
10 0.0000E+00 -9.1725E-01 1.1421E-01 7.0581E-02

MCE Low Pool Load Case
1*** Modal Participation Factors

Mode X-Direction Y-Direction Z-Direction period (sec)
1 0.0000E+00 2.2133E+01 5.4826E+00 5.2080E-01
2 0.0000E+00 9.0977E+00 -2.5568E+01 2.7845E-01
3 0.0000E+00 1.3024E+00 7.4132E+00 2.2800E-01
4 0.0000E+00 -6.4719E+00 -2.5863E+00 1.3591E-01
5 0.0000E+00 2.8372E-01 -4.3314E+00 1.0239E-01
6 0.0000E+00 3.3446E+00 -5.1985E-01 9.1338E-02
7 0.0000E+00 -5.1590E-02 -4.2117E-01 7.9362E-02
8 0.0000E+00 -7.3791E-01 -1.9763E-01 7.1327E-02
9 0.0000E+00 -1.5412E+00 -9.8779E-01 6.4530E-02
10 0.0000E+00 9.7924E-01 -1.3636E+00 6.2772E-02
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response spectrum analysis using the first 10 modes
of vibration for both load cases will produce the
dynamic response well within the required precision.

(5) Figure D-7 shows the results of the modal
analysis in the form of the mode shapes for the first
six modes which were extracted from the equivalent
mass system model for the normal pool. The low
pool mode shapes are similar to these.

b. Response spectrum analysis.

(1) With the significant mode shapes and fre-
guencies extracted, the design response spectrum
developed in paragraph D-9 is introduced into the
dynamic analysis. For each significant mode, the

EP 1110-2-12
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(3) For the example problem, paragrapher-7
requires that the maximum modal stresses (step 1
above) be combined using the complete quadratic
combination (CQC) method. Unfortunately, the
ALGOR Finite Element program does not provide the
CQC option; however, it does provide the ten percent
method (TPM) discussed in paragraph d-7Similar
to the CQC, the TPM will give additional accounting
to modes with nearly the same frequencies. It is
noted from the above tables, the first 5 or 6 modal
frequencies are well separated, so it is unlikely that
there would be significant difference in the results
produced by CQC or TPM for this example problem.
Therefore, each set of 10 maximum modal stresses
will be combined by the TPM to produce the maxi-
mum component response for the Y-direction ground

modal analysis produced the normalized mode shape, motion component and the Z-direction ground motion

the natural period or frequency, and the participation
factor for each ground motion component direction.
The spectral ordinate corresponding to the period or

frequency of each mode is the only additional param-

component.

(4) Referring to paragraph 7eBthe maximum
component responses are to be combined by the

eter required to determine the maximum response for square root of the sum of the squares method (SRSS)
each mode for each ground motion component direc- to produce the final maximum dynamic response.

tion. The procedure is simple. A mode coefficient is

calculated as a function of the participation factor and

the spectral ordinate, and the maximum modal
response, in terms of the deflected shape, is simply
the mode coefficient times the normalized mode
shape. The maximum modal stresses are then com-
puted once the displaced shape is known.

(2) For each mode and for each ground motion

D-11. Results of the Response Spectra
Dynamic Analyses

a. As discussed in Chapters 4 and 5 of this EP,
an acceptable response to the design earthquakes is
based on satisfying allowable tensile stress criteria to
prevent or control the extent of concrete cracking.

component direction, there is a complete set of stres- Two different allowable tensile stresses were estab-
ses. Therefore, the example problem has 20 completdished, one for the parent RCC, and a lesser allowable
sets of maximum modal stresses for each earthquake for the lift joints. It is also noted that there are two
load case. The final phase of the dynamic analysis is allowables for the OBE, and two greater allowables
to combine these 20 sets of stresses into a single set for the MCE.

of stresses representing the maximum dynamic

response to the design earthquake for that earthquake

b. Based on the acceptance criteria stated above,

load case. This phase of analysis can be subdivided it is necessary to determine the maximum principal

into two steps as follows:

tensile stress at critical node points of the computer
model to determine if the design satisfies the allow-

Step 1. Combine each set of 10 maximum modal able tensile stress for the parent RCC. It should be
stresses to produce the maximum component responseoted that the response spectrum analysis first pro-

for each of the two ground motion component
directions.

Step 2. Combine the two maximum component

duces the maximum modal stresses that occur at the
node points, and these stresses are broken down into
their component stresses in the global coordinate
system. The ALGOR computer program uses these

responses for each of the two ground motion compo- component stresses for each mode to calculate the

nent directions to give the final maximum dynamic
response.

principal tensile stress for that mode (at each node
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Figure D-7. Results of modal analysis-mode shapes 1 through 6 from composite finite element-equivalent
mass system model for the MCE normal pool load case
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point), and it then combines these individual mode
principal tensile stresses by the requested modal

EP 1110-2-12
30 Sep 95

the lift joints will govern along the upstream face
since the allowable tensile stress normal to the lift

combination method (the 10 percent method was usedjoints is considerably less than the allowable tensile

for the example problem) to produce the maximum
principal tensile stress at each node. However, the
orientation (or direction) of the principal stress vector
is different for each mode, so the combined maxi-
mum principal tensile stress is not theoretically cor-
rect, but in most instances it can be considered to be

stress for the parent concrete. Figure D-8 presents
graphically the stress contours of the maximum ten-
sile stresses normal to the lift joints for both MCE

load cases. It is noted that these results represent
only the dynamic response to the ground motion
shaking. Static stresses such as the dead load weight

a reasonably conservative estimate. In contrast to thisof the dam or the hydrostatic load acting against the

method, other computer programs will first combine
the component stresses for each mode using the

requested modal combination method, and then calcu-

late the principal tensile stress from the combined

upstream face are not included in these results.

e. Since the direction of the maximum principal
tensile stresses near the sloping downstream face is

component stresses. The problem with this method isapproximately parallel to the face, it is more difficult

that the signs of the component stresses are lost in

the combination process because all of the combina-
tion methods involve taking square roots of the sums
of the squares. Again, the maximum principal tensile

stress calculated from the combined (and always non-

negative) component stresses is not theoretically

to predict whether the tensile stresses normal to the
lift joints or the principal tensile stresses in the parent
concrete will be critical. Therefore, both sets of
stresses must be determined along the downstream
face. Figure D-9 shows graphically the stress con-
tours of the maximum principal tensile stresses that

correct, but in most instances it produces a reasonablywill occur near the downstream face of the dam for

conservative estimate.

c. Based on the acceptance criteria stated ear-
lier, it is also necessary to determine the maximum
tensile stress normal to the plane of the horizontal lift
joints to determine if the design satisfies the allow-
able tensile stress for the lift joints. For the computer
models used in the dynamic analyses, this represents
the component stress vector in the global-Z direction.
It is noted that the problems associated with the prin-
cipal tensile stress calculation are not inherent in
combining the Z-direction component stress vectors
for each of the modes using the required modal com-
bination method. Thus, the combined Z-direction
component stress vector at each node point correctly
represents the maximum tensile stress normal to the
lift joint at that node.

d. The maximum principal tensile stresses occur
near the upstream and downstream faces of the dam

both MCE load cases. Note that these maximum
principal tensile stresses occur during that part of the
oscillation cycle when the top of the dam is translat-
ing upstream. It is noted that these results represent
only the dynamic response to the ground motion
shaking. Static stresses such as the dead load weight
of the dam or the hydrostatic load acting against the
upstream face are not included in these results.

D-12. Static Analyses

a. To complete the dynamic analyses for each
earthquake load case, it is necessary to determine the
static state condition of the RCC dam at the time of
the design earthquake event. For the design example
the static loads acting on the dam at the time of the
earthquake are:

(1) Dead load weight of the RCC.

in much the same manner as the maximum stresses in

a beam in flexure occur at the extreme fibers of the

(2) Hydrostatic pressure of the reservoir against

cross section. It is also noted that the direction of the the upstream face of the dam.

maximum principal tensile stresses near the upstream

and downstream faces, for a typical dam cross sec-
tion, is approximately parallel to the upstream and

b. By activating the minus Z-direction gravita-
tional element load option in the ALGOR computer

downstream faces, respectively. Therefore, the differ- program, the dead weight of the elements is internally
ence between the maximum principal tensile stress at computed and distributed to the element corner node

the typically near vertical upstream face and the
maximum tensile stress normal to the lift joints at the
upstream face is small. Thus, the stresses normal to

points. The hydrostatic loading was calculated as
concentrated Y-direction forces acting on the
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Maximum Tensile Stress Normal to Lift Joints (KSF) - MCE Normal
Pool Load Case - for Full Oscillation Cycle
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Figure D-8. Results of response spectrum analysis-dynamic response to combined horizontal and vertical

components of ground motion for MCE load cases--expressed as maximum tensile stresses normal to the
lift joints
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Maximum Principal Tensile Stress (KSF) - MCE Normal Pool Load Case
for Upstream Translation Part of Oscillation Cycle Only

4 ALGOR+V

Maximum Principal Tensile Stress (KSF) - MCE Low Pool Load Case
for Upstream Translation Part of Oscillation Cycle Only

Figure D-9. Results of response spectrum analysis-dynamic response to combined horizontal and vertical
components of ground motion for MCE load cases--expressed as maximum principal tensile stresses.
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appropriate upstream face node points. Figure D-10
shows the calculations for the hydrostatic load.

MCE NORMAL POOL LOAD CASE: HYDRCSTATIC LOAD

NODE EL NODE
NO. HT dn Hn FORCE
108 175 e 9.56 KIPS
s 17.5
b 101 375 8482
40 550
™ 575 30050
75 125
87 50 70200
75 1875
80 825 1177.60
0 2700
/ " 20.0 1769.04
L % %00
F 6 90.0 2274 48
/ 90 4500
/ 56 450 | 4950 | 132678

7644 78%
Hn+ Hna1
NODE FORCE = =5~ j&n x 0.0624 = 0.0312 Gn{Ha+ Hp.1)

MCE LOW POOL LOAD CASE: HYDROSTATIC LOAD

NODE EL NODE
NG. HT dn Hn FORCE
80 | 45 [} 8318 KIPS
90 45
73 90 505 44
80 135
(1] 90 1010.88
[ 25
) 56 4“5 e 694 96
ETT

Figure D-10. Computation sheet to determine the
forces to apply to the upstream node points to
represent the hydrostatic pressure of the pool

c. With these loads applied to the computer
model, a static finite element analysis was executed
to determine the static stresses. The static stresses
normal to the lift joints for both the high pool and
low pool conditions are shown graphically in
Figure D-11, and the principal static stresses are
shown in Figure D-12.

D-13. Allowable Tensile Stress

Appendix B established the direct tensile strength of
the basic RCC mix to be:

D-20

f', = 290 psi (for the parent concrete)
f', = 205 psi (for the lift joints)

Because of the high strain rates associated with a
seismic event, the dynamic tensile strength is greater
than the direct tensile strength obtained from the lab
tests:

DTS = 1.5f', = 1.5 x 290 = 435 psi (for the parent
concrete)

DTS = 1.5f', = 1.5 x 205 = 307 psi (for the lift
joints)

In accordance with paragraph 4;2he allowable
tensile stress for a new RCC dam in seismic zone 3
for the OBE load condition is:

fiaowaniey = 0-90 % 435 = 392 psi (for the parent
concrete)
fiatowaniey = 0.90 % 307 = 276 psi (for the lift joints)

and in accordance wih paragraph d-ge allowable
tensile stress for the MCE load condition is:

1.33 x 435 = 579 psi (for the parent
concrete)

fl(allowable) =

ft(allowable) =

1.33 x 307 = 408 psi (for the lift joints)

D-14. Critical Tensile Stresses for the Earth-
guake Load Cases

a. The critical tensile stresses are obtained by
adding the dynamic response tensile stresses with the
static stresses at the node points along the upstream
and downstream faces of the dam. These tensile
stresses are then compared to the allowable tensile
stresses to determine the acceptability of the design.

b. The following tabulations show the critical
tensile stresses for the MCE. Also shown in bold
print are the locations where the critical tensile stress
exceeds the allowable tensile stress along with the
percent overstress for these locations.
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Static
MCE

Static
MCE

4 ALGDR+V

Stresses Normal to the Lift Joints (KSF, tension is +) -
Normal Pool Load Case

4 ALEUR+V

Stresses Normal to the Lift Joints (KSF, tension is +), -
Low Pool Load Case

Figure D-11. Static stresses normal to the lift joints - MCE load cases
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4 ALGOR+Y
=DI

Principal Static Stresses (KSF, tension is +) - MCE Normal
Pool Load Case

4 ALEDR+V

Principal Btatic Stresses (KSF, tension is +) - MCE Low
Pool Load Case

Figure D-12. Principal static stresses - MCE load cases

D-22




EP 1110-2-12

30 Sep 95
MCE Normal Pool Load Case:
Critical Tensile Stresses Normal to the Lift Joints at the Upstream Face
Stress Normal to the Lift Joint
(ksf, tension is +)

Node Dynamic Static Critical Tensile Percent
No. Response Stress Stress (psi) Overstressed
143 12.52 -1.55 7w | -
129 53.23 -5.32 3333 | -
115 57.06 -11.40 37 | -
108 65.15 -15.97 342 | -
101 76.27 -21.66 379 | -

94 84.29 -27.39 39| -

87 95.30 -35.14 418 2

80 108.1 -45.25 436 7

73 122.2 -59.42 436 7

66 161.9 -78.37 580 42

56 113.8 -49.16 449 10
MCE Low Pool Load Case:

Critical Tensile Stresses Normal to the Lift Joints at the Upstream Face

Stress Normal to the Lift Joint
(ksf, tension is +)

Node Dynamic Static Critical Tensile Percent
No. Response Stress Stress (psi) Overstressed
143 13.35 -1.55 82 | -
129 56.84 -5.31 38 | -
115 59.98 -11.55 336 | -
108 68.03 -16.50 38 | -
101 80.83 -22.25 407 | -

94 88.26 -28.60 414 1

87 96.68 -37.15 413 1

80 106.8 -49.09 401 | -

73 118.3 -68.30 347 | -

66 154.8 -101.3 372 | -

56 108.3 -71.84 253 | -
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MCE Normal Pool Load Case:
Critical Tensile Stresses Normal to the Lift Joints at the Downstream Face
Stress Normal to the Lift Joint
(ksf, tension is +)
Node Dynamic Static Critical Tensile Percent Over-
No. Response Stress Stress (psi) stressed
149 7.82 -1.53 4 | -
135 76.70 -2.77 513 26
121 39.77 0.16 277 | -
114 49.12 0.54 345 | -
107 59.55 0.19 415 2
100 67.83 -2.28 455 12
93 75.12 -8.04 466 14
86 79.57 -16.28 440 8
79 77.45 -25.06 364 | -
72 79.95 -33.68 322 | e
62 43.39 -24.10 134 | -

MCE Low Pool Load Case:
Critical Tensile Stresses Normal to the Lift Joints at the Downstream Face

Stress Normal to the Lift Joint

(ksf, tension is +)

Node Dynamic Static Critical Tensile Percent Over-
No. Response Stress Stress (psi) stressed
149 8.56 -1.53 49 | e
135 82.49 -2.72 554 26
121 42.66 -0.02 296 | -
114 51.86 0.06 3661 | e
107 61.14 0.64 429 5
100 67.41 1.21 477 17
93 72.58 0.28 506 24
86 75.68 -3.44 502 23
79 73.05 -9.58 441 8
72 74.98 -15.40 414 1
62 40.63 -13.79 86 | -
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MCE Normal Pool Load Case:
Critical Principal Tensile Stresses at the Downstream Face
Principal Tensile Stress
(ksf, tension is +)
Node Dynamic Static Critical Tensile Percent Over-
No. Response Stress Stress (psi) stressed
149 7.82 -1.53 4 | -
135 76.70 -2.77 513 | -
121 60.24 -1.75 406 | -
114 74.68 -2.09 54 | -
107 89.66 -2.90 602 4
100 103.7 -6.19 677 17
93 120.8 -13.69 744 28
86 126.0 -26.38 692 20
79 121.4 -40.07 564 | -
72 121.7 -52.48 48 | -
62 91.63 -46.83 312 | -

MCE Low Pool Load Case:
Critical Principal Tensile Stresses at the Downstream Face

Principal Tensile Stress

(ksf, tension is +)

Node Dynamic Static Critical Tensile Percent Over-
No. Response Stress Stress (psi) stressed
149 8.56 -1.53 49 | -
135 82.49 -2.72 54 | -
121 48.86 -1.84 326 | -
114 60.06 -1.70 405 | -
107 71.20 -1.36 485 | -
100 84.48 -1.89 574 | -
93 103.4 -4.51 687 19
86 112.2 -8.29 722 25
79 111.8 -14.80 674 16
72 113.5 -23.74 623 8
62 85.91 -24.10 429 | -

D-15. Conclusions and Recommendations

can be made to satisfy the earthquake resistant design

criteria for new dams as established by this EP.

a. The critical tensile stresses shown in para-
graph D-14 indicate certain areas or zones where
superior RCC mixes are required so the RCC dam

Figure D-13 shows the zones that require RCC mixes
with higher tensile capacity than the basic RCC mix
with f'_ of 3,000 psi.
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66

26

SO

STRESS ZONES:

E ZONE WITHIN ALLOWABLE TENSILE STRESS OF BASIC MIX

ZONE LESS THAN 25 PERCENT OVERSTRESSED

_ ZONE EXCEEDING 25 PERCENT OVERSTRESSED

Figure D-13. Zones exceeding the allowable tensile stress for the basic RCC mix
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b. The final step of the earthquake resistant
design procedure would be to develop some higher
strength RCC mix designs. Once the lab and field
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(b) Another parameter associated with defining
the design earthquake is whether both horizontal and
vertical components of ground motion are specified or

placement tests have been completed for these super-if only the horizontal component is specified. The

ior mixes, and their material properties established,
the computer model shown in Figures D-1 and D-2
would be adjusted to reflect the zones of superior
RCC. The dynamic analysis would be performed
with the new computer model following the same
procedure demonstrated above. If continued design
upgrade attempts fail to meet the acceptability
requirements, a more refined time-history analysis
may be used to gain more insight regarding the
dynamic response.

D-16. Comparing Response From Different
Analysis Methods

a. Differences and similarities of attributesn
this appendix the design example problem was ana-
lyzed with the composite finite element-equivalent
mass system method using a general purpose finite
element program as discussed in paragrapl.8i2
Appendix C, the same design example problem was
analyzed using Chopra’s simplified method as
described in paragraph &2 A comparison will now
be made of the results produced by the two different
methods of analysis. The earthquake loads for the
normal reservoir condition will be used for the com-
parison. Referring to the attributes of dynamic analy-
sis methods described in paragraph 8-1, the attribute
differences and similarities for the two methods are:

(1) Material behavior - both methods used linear
elastic material behavior. Material properties are
identical for the two methods.

(2) Design earthquake definition - both methods
used a design response spectrum to define the free
field ground motion for the design earthquakes. Both

composite finite element method used both horizon-
tal and vertical components of ground motion.
Chopra’s simplified method is capable of only analyz-
ing for the horizontal component of ground motion.

As discussed in paragraph 7-8, the vertical component
of ground motion can have significant effect on the
response.

(3) Dimensional representation of project condi-
tions - both methods used 2-D representation. The
same 2-D cross section of the critical element of the
dam was used in both analyses.

(4) Model configuration - the composite finite
element method uses discrete finite elements to model
the dam and a block of the foundation, and added
mass to represent the hydrodynamic effects.
Dynamic response is obtained by eigen solution of
the stiffness and mass matrices. This type of equiva-
lent mass system model is discussed in para-
graph 8-H(3). Chopra’s simplified method uses a
“standardized model” as discussed in para-
graph 8-1(1). With a “standardized model,”
dynamic loads are characterized by equivalent static
load so that the stresses can be determined by either
simple beam bending theory or by applying the equi-
valent static load to a finite element model of the
dam fixed at the base. Appendix C utilized the latter
method to determine the stresses because it provides
a more realistic distribution of stress.

(a) Although the “standardized model” accounts
for the foundation effects by increasing the funda-
mental period and the damping factor, its use of a
simplified standard mode shape, based solely on
horizontal translations relative to the fixed base, only
approximates the 2-D deformations within the dam in

methods anchored the design spectrum using the sameesponse to the inertial effects of the ground motion.

PGA of 0.550 g.

(a) Differences in effective damping affect the

For example, the rigid body translation and rotational
effect of the dam on its flexible foundation are not
incorporated in the simplified approach. Therefore,

response. The composite finite element method used the stress pattern produced by the two different analy-

a damping factor of 11.34 percent, and Chopra’s
method used a damping factor of 12.33 percent.
Since damping in the response spectrum analysis is
reflected in the spectral shape, the slightly higher
damping in the Chopra analysis results in a slightly

sis methods can be quite different at some locations
in the dam.

(b) Another difference that can be considered as
a part of the model configuration is the method used

smaller response compared to the response producedto combine the modal responses. In the composite

by the composite finite element method.

finite element method the maximum modal responses
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were combined by the Ten Percent Method (TPM) (2) Itis more difficult to adjust parameters in
discussed in paragraph 7-7, where the modal Chopra’s simplified method because this method has
responses for Chopra’s simplified method were com- primarily fixed attributes. However, one adjustment
bined by square root of the sum of the squares that is possible consists of placing the equivalent
method (SRSS). The TPM gives some additional lateral static load on the same composite dam-
accounting for modes of nearly the same frequency, foundation finite element model as was used in the
and thus produces greater combined response. more refined composite finite element analysis
method. This will produce a more realistic stress
b. Comparing common parameter3he follow- pattern, particularly near the dam foundation interface
ing table compares the values of the parameters com-because it allows for deformation of the foundation
mon to both methods of analysis: and associated redistribution of stresses from that of
the fixed condition of the dam base as described in
Appendix C.
Table of Common Parameters - MCE Normal Pool
Load Case (3) To help evaluate the difference in response
Chopra’s Simplified | Composite Finite of the two methods, a single parameter will be
Parameter | Method Element Method adjusted and an analysis made to determine it's effect
on the stresses. A description of the adjustment of
;} %igg sec 2:332 sec parameters follows. Note that Analysis #1 is the
R, 0.85 1.00 most refined analysis progressing sequentially to
R, 1.190 1.336 Analysis #6 which is the least refined analysis.
T, 0.585 sec 0.558 sec
8 12.33% 11.34% ANALYSIS #1: The composite finite element-
Sa 2237 fusec 22.26 fusec equivalent mass system analysis as presented in this
appendix with no modifications.
c. Method for comparing resultsTo gain an ANALYSIS #2: Analysis #1 modified by delet-

understanding of the causes of the difference in the ing the vertical component of ground motion.
dynamic stress response as produced by the two
analysis methods, several parameters will be adjusted =~ ANALYSIS #3: Analysis #2 modified by using
to determine to what extent they contribute to the SRSS to combine the maximum modal responses.
difference in stress response.

ANALYSIS #4: Analysis #3 modified by using

(1) The composite finite element analysis repre- a 12.33 percent effective damping factor.

sents the more refined of the two analysis methods
since its attributes and their associated parameters ANALYSIS #5: Chopra’s simplified method as
more closely represent the design conditions of the  presented in Appendix C, but the stresses are deter-
example problem. To determine how refinement of mined by applying the equivalent static load on a

these parameters contributed to the difference in composite finite element model of the dam-foundation

response, they will be set to the same value as was as discussed above in paragraph 2{2§

used in the simplified analysis. Adjustment of

parameters is easy because of the flexible attribute ANALYSIS #6: Chopra’s simplified method as
capabilities of the composite finite element method as presented in Appendix C with no modifications.
discussed in paragraph &2).
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MCE Normal Pool Load Case:
Critical Tensile Stresses Normal to the Lift Joints at the Upstream Face
Critical Tensile Stress (psi)
Composite Finite Element Method Chopra’s Method
Analysis Analysis Analysis Analysis Analysis Analysis
Node No. #1 #2 #3 #4 #5 #6
143 76 72 71 68 196 196
129 333 315 313 302 262 262
115 317 293 291 279 198 198
108 342 312 310 297 186 187
101 379 343 341 326 205 205
94 395 354 353 336 206 204
87 418 371 370 351 210 205
80 436 385 385 363 218 224
73 436 385 385 360 219 281
66 580 535 534 500 316 494
56 449 428 428 404 285 247
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MCE Normal Pool Load Case:
Critical Tensile Stresses Normal to the Lift Joints at the Downstream Face

Critical Tensile Stress (psi)

Composite Finite Element Method

Chopra’s Method

Analysis Analysis Analysis Analysis Analysis Analysis
Node No. #1 #2 #3 #4 #5 #6
149 44 42 41 40 94 94
135 513 493 490 474 527 527
121 277 265 264 255 239 239
114 345 330 329 319 305 305
107 415 398 398 385 378 377
100 455 440 439 425 422 418
93 466 453 453 437 430 427
86 440 431 431 414 395 398
79 364 357 357 340 310 307
72 321 311 311 294 253 188
62 134 125 125 115 93 44

MCE Normal Pool Load Case:
Critical Principal Tensile Stresses at the Downstream Face

Critical Tensile Stress (psi)

Composite Finite Element Method

Chopra’s Method

Analysis Analysis Analysis Analysis Analysis Analysis
Node No. #1 #2 #3 #4 #5 #6
149 44 42 41 40 98 98
135 513 493 490 474 607 607
121 406 455 453 374 395 396
114 504 482 482 466 493 493
107 602 579 579 560 593 593
100 677 655 655 633 657 656
93 744 725 724 699 702 701
86 692 679 679 652 637 643
79 564 554 554 527 493 498
72 481 463 463 437 385 305
62 311 290 290 270 234 67
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